

ANALYTICAL REPORT

Prepared by Roy F. Weston, Inc.

Cornell Dubilier Electronics S. Plainfield, NJ

August 1997

EPA Work Assignment No. 2-262
WESTON Work Order No. 03347-142-001-2262-01
EPA Contract No. 68-C4-0022

Submitted to S. Burchette EPA-ERTC

The Kindles	8/28/97
K. Robbins	Date
Task Leader	•
Virol Linscel	8/29/97
V. Kansal	Date
Analytical Section Leader	
Lind Laural	<u> </u>
E. Gilardi	Date
Project Manager	• •

Analysis by: REAC Kiber

Prepared by: G. Karustis

Reviewed by: M. Barkley

Table of Contents

Topic			Page 1	Number
Introduction		•	Page	1
Case Narrative			Page	1
Summary of Abbreviations	,	• •	Page	3
January 01.13310 11232				- .
Section I		•		
Section 1				
Analytical Procedure for PCBs in Air			Page	4
Analytical Procedure for PCBs in Dust			Page	6
Analytical Procedure for Lead and Cadmium in Air			Page	8
Analytical Procedure for Lead and Cadmium in Dust			Page	9
Results of the Analysis for PCBs in Air	Table 1.1		Page	10
Results of the Analysis for PCBs in Dust	Table 1.1		Page	10
Results of the Analysis for Lead and Cadmium in Air	Table 1.2	÷		13
Results of the Analysis for Lead and Cadmium in Dust		2	Page	14
Results of the Analysis for Lead and Cadmium in Dust	Table 1.4	•	Page	14
Cassian II		•		
Section II				
QA/QC for PCBs		•	Page	15
Results of the Surrogate Recoveries for PCBs in Air	Table 2.1		Page	16
Results of the MS/MSD Analysis for PCBs in Air	Table 2.1	•	Page	17
Results of the Surrogate Recoveries for PCBs in Dust	Table 2.3		Page	18
QA/QC for Lead and Cadmium in Air	Table 2.3	•	Page	19
Results of the QC Standard for Lead and Cadmium (Air)	Table 2.4		_	20
Results of the Laboratory Control Standard for	Table 2.4		Page	20
Lead and Cadmium (Air)	Table 2.5		Page	21
	Table 2.3		rage	21
Results of the Media Spike/Media Spike Duplicate Analysis for Lead and Cadmium in Air	Table 2.6		Daga	22
	1 able 2.0		Page	22
Results of the Reagent Spike Analysis for Lead and Cadmium in Air	Table 2.7		Page	23
QA/QC for Lead and Cadmium in Dust	Table 2.7		_	24
Results of the Analysis of the Laboratory Control Standard for		*	Page	24
Lead and Cadmium in Dust	Table 2.8		Dogo	25
Results of the Duplicate Analysis for Lead and Cadmium	1 abic ,2.0		Page	23
in Dust	Table 2.9		Doge	26
	1 able 2.9		Page	20
Results of the Matrix Spike Analysis for Lead and Cadmium in Dust	Table 2.10		Dogo	27
in Dust	Table 2.10		Page	21
Section III				
Section III				
Communications			Page	28
Chains of Custody			Page	29
Chamb of Custody			rage	49
Appendix A Data for Lead and Cadmium in Air	•		Page	G 250 01
Appendix A Data for Lead and Cadmium in Dust		**	Page	G 290 01
Appendix C Data for PCBs in Air			Page	G 318 01
Appendix C Data for PCBs in Dust			Page	
Appendix C Data for I CD3 iii Dust	•	•	rage	2 11 01

Appendices will be furnished on request.

Introduction

REAC, in response to ERTC WA # 2-262, provided analytical support for environmental samples collected at the Cornell Dubilier Electronics Site in S. Plainfield, NJ as described in the following table. The support also included QA/QC, data review and the preparation of a report summarizing the analytical methods, results, and the QA/QC results.

The samples were treated with procedures consistent with those described in SOP #1008 and are summarized in the following table:

COC #**	Number of Samples	Sampling Date	Date Received	Matrix	Analysis	Laboratory
03968	4	6/9/97	6/13/97	Vacuum Dust	Pb, Cd	Kiber
03968	14	6/9/97	6/13/97	Concrete Dust	Pb, Cd	Kiber
08342	12	6/5/97	6/6/97	Air	Pb, CD	REAC
08343	12	6/5/97	6/6/97	Air	PCB	REAC
08400	4	6/9/97	6/11/97	Vacuum Dust	РСВ	REAC
08400	14	6/9/97	6/11/97	Chip Dust	PCB	REAC

COC # denotes Chain of Custody number

Case Narrative

Lead and Cadmium in Air Package G 250

The data were examined and were found to be acceptable.

PCB in Air Package G 318

The end of sequence calibration check standard of 6/19/97 exceeded the acceptable QC limits for tetrachloro-m-xylene, decachlorobiphenyl and peaks one and two of Aroclor 1248. The data are not affected.

The end of sequence calibration check standard of 6/19/97 exceeded the acceptable QC limits for all five peaks of Aroclor 1248. The data are not affected

The percent recoveries of the surrogate decachlorobiphenyl exceeded the acceptable QC limits for sample 499 (Field Blank). The data are not affected.

PCB in Dust Package G 441

Because the analyses were run more than 50 days beyond the extraction date, values should be regarded as estimated. Original samples were re-extracted. There is no significant difference in the results.

The continuing calibration check standard CRD3A21A.D exceeded the acceptable QC limit for decachlorobiphenyl (35%). The data are not affected.

The continuing calibration check standard CRD3A01A.D exceeded the acceptable QC limit for decachlorobiphenyl (29%). The data are not affected.

The continuing calibration check standard CRD3A24A.D exceeded the acceptable QC limit for decachlorobiphenyl (34%). The data are not affected.

The end of sequence calibration check CRD3A28A.D exceeded the acceptable QC limits for five peaks of Aroclor 1254. The data are not affected.

Because of the presence of Aroclor 1248 and Aroclor 1254 at ppm concentrations, the samples required high dilutions and the surrogates were not recovered. The data are not affected.

Lead and Cadmium in DustPackage G 290.

The data were examined and were found to be acceptable.

Summary of Abbreviations ...

AA	Atomic Absorption	· ·		
В	The analyte was found in the bla	ank		•
BFB	Bromofluorobenzene		• .	
BPQL	Below the Practical Quantitation	Limit		
C C	Centigrade			
D .	(Surrogate Table) this value is f	rom a dibuted same	le and was not calc	nilated
D	(Result Table) this result was of	-		.maicu
Dioxin			_	
Dioxiii	denotes Polychlorinated Dibenz	o-p-moxins and Po	iyemormated Diber	izoiurans and
CT D	PCDD and PCDF			
CLP	Contract Laboratory Protocol		• *	
COC	Chain of Custody	•		
CONC	Concentration			
CRDL	Contract Required Detection Li			
CRQL	Contract Required Quantitation	Limit		
DFTPP	Decafluorotriphenylphosphine			
DL	Detection Limit			5
Ε	The value is greater than the high	ghest linear standar	d and is estimated	•
EMPC	Estimated maximum possible co	ncentration		
CAP	Inductively Coupled Argon Plas	ma		
ISTD	Internal Standard	5	•	
J ·	The value is below the method	detection limit and	is estimated	
LCS	Laboratory Control Sample	• •		
LCSD	Laboratory Control Sample Duy	olicate	·	
MDL	Method Detection Limit	. —	•	-
MQL	Method Quantitation Limit			•
MI	Matrix Interference			
MS	Matrix Spike		•	
MSD	Matrix Spike Duplicate			
MW	Molecular Weight			
NA	either Not Applicable or Not A	vailable		
NC	Not Calculated	Vanavic		
NR				
	Not Requested		, .	
NS # D	Not Spiked			
% D	Percent Difference			
% REC	Percent Recovery			
PQL	Practical Quantitation Limit			
PPBV	Parts per billion by volume		•	• .
QL	Quantitation Limit	•		
RPD	Relative Percent Difference		* * *	
RSD	Relative Standard Deviation			
SIM	Selected Ion Mode	•		
TCLP	Toxic Characteristics Leaching	Procedure		
U	Denotes not detected	•		
m³	cubic meter kg	kilogram	μ g	microgram
L	liter g	gram	pg	picogram
mL	milliliter mg	milligram	r 0	
uL	microliter			
*	denotes a value that exceeds the	accentable OC lin	nit	
	· · · · · · · · · · · · · · · · · · ·	-		normores on +1
•	Abbreviations that are specific table	io a particular table	are exhiamen in it	YOTHORES OF IT
	sion 3/7/97			

Analytical Procedure for PCBs in Air

Extraction Procedure

The entire wipe was spiked with a surrogate solution consisting of tetrachloro-m-xylene and decachlorobiphenyl, and was sonicated with hexane. The combined extracts were concentrated to 3.0 mL.

Gas Chromatographic Analysis

The extract was analyzed for PCBs using simultaneous dual column injections. The analysis was done on an HP 5890 GC/ECD system, equipped with an HP 7673A automatic sampler, and controlled with an HP-ChemStation. The following conditions were employed:

First Column DB-608, 30 meter, 0.53mm fused silica

capillary, $0.83 \mu m$ film thickness

Injector Temperature 250° C
Detector Temperature 325° C

Temperature Program 150°C for 1 minute

7°C/min to 265°C 18 min at 265°

Second Column Rtx-1701, 30 meter, 0.53mm fused silica

capillary, 0.50 µm film thickness

Injector Temperature 250° C
Detector Temperature 325° C

Temperature Program 150° C for 1 minute

7°C/min to 265°C 18 min at 265°

The gas chromatographs were calibrated using 5 Aroclor 1254 standards at 250, 500, 1000, 2000, and 5000 μ g/L. The response from each mixture were used to calculate the response factors (RF) of each analyte. The average RF was used to calculate the concentrations of PCB in the samples. Quantification was based on the DB-608 column (signal 1), and identity of the analyte was confirmed using the Rtx-1701 column (signal 2). A fingerprint gas chromatogram was run using each of the seven Aroclor mixtures.

The PCB results, listed in Table 1.1, were calculated from the following formula:

$$C_u = \frac{DFxA_uxV_t}{RF_{ave}xV_i}$$

where .

 $C_u = Concentration of analyte (<math>\mu g/100 \text{ cm}^2$)

DF = Dilution Factor

A_u = Area or peak height

V_t = Volume of sample (mL)

RF_{ave} = Average response factor

V_t = Volume of extract injected (μL)

Response Factor calculation:

The RF for each specific analyte is quantitated based on the area response from the continuing calibration check as follows:

$$RF = \frac{A_u}{total \ pg \ injected}$$

where

A_u = Area or peak height

and

$$RF_{am} = \frac{RF_1 + ... + RF_n}{n}$$

where

n = number of samples

Revision 7/11/94

Analytical Procedure for PCBs in Dust

Extraction Procedure

The dust samples were extracted by the Soxhlet method. Thirty grams of sample was spiked with a surrogate solution consisting of tetrachloro-m-xylene and decachlorobiphenyl, 30 g anhydrous sodium sulfate and Soxhlet extracted for 16 hours with 300 mL 1:1 hexane: acetone. The extract was concentrated to 5.0 mL.

Gas Chromatographic Analysis

The extract was analyzed for PCBs using simultaneous dual column injections. The analysis was done on an HP 5890 GC/ECD system, equipped with an HP 7673A automatic sampler, and controlled with an HP-CHEM STATION. The following conditions were employed:

First Column DB-608, 30 meter, 0.53mm fused silica

capillary, 0.83 µm film thickness

Injector Temperature 250° C
Detector Temperature 325° C

Temperature Program 150°C for 1 minute 7°C/min to 265°C

18 min at 265°

Second Column Rix-1701, 30 meter, 0.53mm fused silica

capillary, 0.50 µm film thickness

Injector Temperature 250° C
Detector Temperature 325° C

Temperature Program 150° C for 1 minute

17°C/min to 265°C 18 min at 265°

The gas chromatographs were calibrated using 5 PCB standards at 250, 500, 1000, 2000 and 5000 μ g/L. The results from each mixture were used to calculate the response factor (RF) of each analyte and the average Response Factor was used to calculate the concentration of PCB in the sample. Quantification was based on the DB-608 column (signal 1) and the identity of the analyte was confirmed using the Rtx-1701 column (signal 2). A fingerprint chromatogram was run using each of the seven Aroclor mixtures; calibration curves were run only if a particular Aroclor was found in the sample

The PCB results, listed in Table 1.2, are calculated by using the following formula:

$$C_u = \frac{DFxA_uxV_t}{RF_{ave}xV_ixWxD}$$

where

C_u = Concentration of analyte (mg/Kg)

DF = Dilution Factor

A_u = Area or peak height

V_t = Volume of sample (mL)

RF_{ree} = Average response factor

 V_i = Volume of extract injected (μ L)

W = Weight of sample (g)
D = Decimal percent solids

Response Factor calculation:

The RF for each specific analyte is quantitated based on the area response from the continuing calibration check as follows:

$$RF = \frac{A_u}{total \ pg \ injected}$$

where

 $A_u = Area or peak height$

and

$$RF_{an} = \frac{RF_1 + ... + RF_n}{n}$$

where

n = number of samples

Revision 7/11/94

Sample Preparation

Each wipe sample was transferred to a clean 100 mL beaker and prepared according to reference method NIOSH 7105. The samples were thoroughly mixed with 5 mL concentrated nitric acid and heated on a hot plate until the volume was reduced to 0.5 mL. Additional nitric acid and hydrogen peroxided were added during heating to conjecte digestion of the wipe pad. After digestion, the samples were allowed to cool to room temperature, transferred to 25 mL volumetric flasks and diluted to 25 mL with ASTM Type II water. The samples were analyzed for all lead and cadmium, by USEPA SW-846, Method 7000 (Atomic absorption) or Method 6010 (Inductively Coupled Argon Plasma-ICAP) procedures.

A reagent blank, reagent blank spike, media blank and media blank spike were carried through the sample preparation procedure for each analytical batch of samples processed. One matrix spike (MS) and one matrix spike duplicate (MSD) sample (prepared using blank wipes) were also processed for each analytical batch or every 10 samples.

Analysis and Calculations

The instruments were calibrated and operated according to SW-846, Method 7000/6010 and the manufacturers operating instructions. After calibration, initial calibration verification (ICV), initial calibration blank (ICB) and quality control check standards were run to verify proper calibration. The continuing calibration verification (CCV) and continuing calibration blank (CCB) were run after every ten samples to assure proper operation during sample analysis.

The metal concentrations in solution, in micrograms per liter ($\mu g/L$) were taken from the read-out systems of the AA and ICAP instuments. The results (in micrograms per wipe, $\mu g/\text{wipe}$) were obtained by externally correcting read-outs for final digestion volume.

Final concentrations, (µg/wipe) were given by:

 μ g metal/wipe sample = Ax(V/1000)xDF

where:

A = Insrument read-out $(\mu g/L)$

V = final volume of processed sample (mL)

DF = Dilution Factor (1.00 for no dilution)

For samples that required dilution to be within the instrument calibration range, DF is given by:

DF = (C+B)/C

where:

B = acid blank matrix used for dilution (mL)

C = sample blank aliquot (mL)

The results of the analysis are listed in Table 1.3.

Analytical Procedure for Lead and Cadmium in Dust

The subcontract laboratory determined the lead and cadmium concentrations in the samples by preparing them according to USEPA Method 3050 and analyzing them according to USEPA Method 6010. Both procedures are found in SW-846. The results of the analysis are listed in Table 1.4.

\2262\DEL\AR\9708\REPORT

00009

Table 1.1 Results of the Analysis for PCBs in Air WA # 2-262 Cornell Dubilier Electronics

Sample ID Location Volume (L)	PBLK06	5069701 -	00332 Columbia / Back Storage 960		00334 Columbia/ Shelf Mid Work Area 960		00336 Columbia/ 300 Mid Bench Shelf 960		00338 Columbia Storage Bin 1080	
	Conc. µg	MDL	Conc. µg/m3	MDL µg/m3	Conc. µg/m3	MDL µg/m3	Conc. µg/m3	MDL µg/m3	Conc. µg/m3	MDL µg/m3
AROCLOR 1016	U	0.3	7	2.6	12	2.6	18	5.2	33	4.6
AROCLOR 1221	U	0.5	Ų	0.5	U ·	0.5	U	0.5	U	0.5
AROCLOR 1232	U	0.3	U	0.3	U	0.3	U	0.3	U	0.3
AROCLOR 1242	U	0.3	U	0.3	U	0.3	U .	0.3	U	0.3
AROCLOR 1248	U	0.3	2	2.6	5	2.6	6	5.2	12	4.6
AROCLOR 1254	U	0.3	U	0.3	U	0.3	υ	0.3	U	0.3
AROCLOR 1260	Ū	0.3	· Ü	0.3	υ	0.3	Ü	0.3	บ	0.3

Sample ID Location Volume (L)	00340 Columbia/ Back Room 960		00342 Columbia/ Pole 20 Back Room 960		00344 Robalo/ Pole Near Breaker 960		00346 Robalo/ Shelf In Side Bay Door 960		00348 Truck Fenceline 960	
•	Conc. µg/m3	MDL µg/m3	Conc. µg/m3	MDL µg/m3	Conc. µg/m3	MDL µg/m3	Conc. µg/m3	MDL µg/m3	Cond. µg/m3	MDL µg/m3
AROCLOR 1016	10	2.6	16	5.2	3.7	5.2	0.6	0.3	U	0.3
AROCLOR 1221	U	0.5	U	0.5	Ü	0.5	U	0.5	U	0.5
AROCLOR 1232 AROCLOR 1242	U	0.3 0.3	U	0.3 0.3	U	0.3 0.3	U	0.3 0.3	U	0.3 0.3
AROCLOR 1242	5	2.6	7	5.2	2.3	5.2	0.4	• 0.3	0.2	J 0.3
AROCLOR 1254	ŭ	0.3	ύ	0.3	U	0.3	U	0.3	U.Z.	0.3
AROCLOR 1260	Ū	. 0.3	Ū	0.3	ŭ	0.3	ŭ ·	0.3	ŭ	0.3

Sample ID Location Volume (L)	00350 Roadway Corner 960			095 Field	554 Blank -	09556 Lot Blank		
	Conc. µg/m3.		MDL µg/m3	Conc.	MDL ng	Conc. ng	MDL ng	
AROCLOR 1016 AROCLOR 1221 AROCLOR 1232	. U		0.3 0.5 0.3	ນ ປ	250 500 250	U U U	250 500 250	
AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1260	. U U 0.2 U	J	0.3 0.5 0.3 0.3	. U	250 250 250 250 250	υ υ υ	250 250 250 250 250	

2262\DEL\AR\9708\ALL

Table 1.2 Results of the Analysis for PCBs in Dust WA # 2-262 Cornell Dubilier Electronics

Based on dry weight

Client ID Location Percent Solid	SBLK06119701 - 100		09889 A Columbia Composite 100		09890 A Robalo Composite 100		09891 A Robalo Composite 100		09892 A Norpak Composit 100	
Analyte	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg
Aroclor 1016	U	0.04	U	830	U	1300	U	130	U	4.2
Aroclor 1221	U	0.08	U	1700	U	2500	U	270	U	8.3
Aroclor 1232	U	0.04	U	830	\U →	1300	υ	130	U	4.2
Aroclor 1242	U	0.04	u	830 -	U	1300	U	130	U	4.2
Arocior 1248	U	0.04	4500	830	5200	1300	360	130	16	4.2
Arocior 1254	U	0.04	15000	830	16000	1300	2500	130	81 ·	4.2
Aroclor 1260	U	0.04	U	830	υ	1300	U	130	U	4.2

Client ID Location Percent Solid Analyte	09894 A Chip 1 Top 100		09895 A Chip 1 Bottom 100		09896 A Chip 2 Top 100		09897 A Chip 2 Bottom 100		09898 A Chip 3 Top 100	
	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	Conc. rng/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg
Aroclor 1016	U	4200	U	4200	U	83	U	4.2	υ	83
Aroclor 1221	U	8300	U	8300	U	170	U	8.3	U	170
Arocior 1232	· U	4200	Ų	4200	U	83	U	4.2	U	83
Aroclor 1242	U	4200	ΰ	4200	U	83	U	4.2	U	83
Aroclor 1248	21000	4200	19000	4200	190.	83	42	4.2	400	83
Arociar 1254	57000	4200	41000	4200	590	83	81	4.2	870	83
Arocior 1260	U	4200	U	4200	U	83	U	4.2	Ü	83

Table 1.2 (Cont) Results of the Analysis for PCBs in Dust WA # 2-262 Cornell Dubilier Electronics Based on dry weight

Client ID Location Percent Solid	02343 A Chip 3 Bottom 100		02344 A Chip 4 Top 100		02345 A Chip 4 Bottom 100		02346 A Chip 5 Top 100		02347 A Chip 5 Bottom 100	
Analyte	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg
Arocior 1016	U	83	U	1700	U	2100	U	42	U	17
Arocior 1221	U	170	U	3300	U	4200	U	83	U .	33
Arocior 1232	U	83	U	1700	U	2100	U	42	U	17
Arocior 1242	IJ	83	U	1700	U	2100	U	42 .	U	17
Arocior 1248	320	83	28000	1700	31000	2100	150	. 42	94	17
Aroclor 1254	530	83	17000	1700	15000	2100	200	42	100	17
Arocior 1260	U	83	Ü	1700	U	2100	U	42	υ.	17

Client ID Location Percent Solid	Chip	148 A ·6 Top 00	Chip	349 A 6 Bottom 100	Chip	350 B 7 Top 100	02351 A Chip 7 Bottom 100		
Analyte	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	
Aroclor 1016	U	170	U	83	υ	6.1	U	17	
Aroclor 1221	U	330	Ŭ	170	υ	12	U	33	
Aroclor 1232	U	170	U	83	υ	6.1	U	17	
Arocior 1242	U	170	U	83	U	6.1.	U	17	
Aroclor 1248	1800	170	540	83	23	6.1	48	17	
Aroclor 1254	1000	170	250	83	73	6.1	58	17	
Arocior 1260	U	170	U	83	U	6.1	U	17	

Table 1.3 Results of the Analysis for Lead and Cadmium in Air WA # 2-262 Cornell Dubiller Electronics

Paramete Analysis i	• • •	Volume		mium Imace		mium Imace	Le AA-fu		Le AA-fu	
Client ID	Location	(L)	Conc µg/m³	DL µg/m³	Conc µg/filter	DL µg/filter	Conc µg/m³	DL µg/m³	Conc µg/filter	DL µg/filter
00331	Columbia/Back Storage	960	0.054	0.0052		•	0.971	0.052	•	-
00333	Columbia/Shelf Mid Work area	960	0.037	0.0052	-	•	0.578	0.052	•	•
00335	Columbia/3cd Mid Bench Shelf	960	0.021	0.0052	•	•	0.117	0.052	<u>:</u>	-
00337	Columbia/Storage Bin by Break Room	960	0.011	0.0052	•	-	0.115	0.052		-
00339	Columbia/Back Room Work Bench	960	0.013	0.0052	•	÷	0.354	0.052	-	-
00341	Columbia/Pole 20 Back Room	960	0.008	0.0052	•	-	0.253	0.052	•	-
00343	Robaio/Pole Near Breaker	960	0.017	0.0052	-	-	0.417	0.052		•
00345	Robato/Shelf Inside Bay Door	960	0.007	0.0052	•		0.185	0.052		•
00347	Truck Fencline	912	0.005	0.0055	-	•	0.134	0.055	•	•
00349	Roadway Corner	960	0.002	0.0052	•	•	0.083	0.052	•	-
09553	Field Blank	•	-	•	Ū	0.005	•	•	0.100	0.050
09555	Lot Blank		-		u	0.005	-	•	0.073	0.050

Table 1.4 Results of the Analysis for Lead and Cadmium in Dust WA # 2-262 Cornell Dubilier Electronics

Based on dry weight

Parameter:	: .	% Solids	Lead		Cadmium	
Client ID	Location		Conc mg/kg	MDL mg/kg	Conc mg/kg	MDL mg/kg
B 09889	Columbia Composite	97	3800	37	130	5.4
B 09890	Robalo Composite	96	2600	32	120	24
B 09891	Robalo Composite	97	1500	6.3	24	4.6
B 09892	Norpak Composite	98	1700	6.8	44	5.0
B 09894	Chip 1 - Top	96	1000	5.6	U	4.1
8 09895	Chip 1 - Bottom	96	68	6,4	U	4.6
B 09896	Chip 2 = Top	99	360	5.8	U	4.2
B 09897	Chip 2 - Bottom	98	48	5.3	. U	3.9
B 09898	Chip 3 - Top	97	71	4.7	υ	3.5
B 02343	Chip 3 - Bottom	98	33	6.9	U	5.1
B 02344	Chip 4 - Top	95	100	7.4	9.4	5.4
B 02345	Chip 4 - Bottom	96	22	5.4	U	3.9
B 02346	Chip 5 - Top	97	39	5.9	U	4.3
B 02347	Chip 5 - Bottom	95	24	8.1	U	5.9
B 02348	Chip 6 - Top	99	190	4.4	U	3.2
B 02349	Chip 6 - Bottom	98	16	4.6	U	3.4
B 02350	Chip 7 - Top	97	100	7.4	U	5.4
B 02351	Chip 7 - Bottom	97	40	6.0	Ū	4.4
Method Blank	•	NA	Ü	7.1	Ū	5.2

QA/QC for PCBs

Each air sample was spiked with a solution of tetrachloro-m-xylene and decachlorobiphenyl as surrogates. Percent recoveries ranged from 78 to 152 and are listed in Table 2.1. Twenty-nine out of thirty values were within the advisory QC limits.

Sample 500 was chosen for the matrix spike/matrix spike duplicate (MS/MSD) analyses for the air samples. The percent recoveries were 80 and 83 and are listed in Table 2.2. The relative percent difference (RPD), also listed in Table 2.2, was 3. QC limits are not available for this analysis.

Each dust sample was spiked with a solution of tetrachloro-m-xylene and decachlorobiphenyl as surrogates. Percent recoveries, listed in Table 2.3, ranged from 100 to 117. Both reported values were within the acceptable QC limits. Thirty-six other values were from diluted samples and the percent recovery could not be calculated.

Table 2.1 Results of the Surrogate Recoveries for PCBs in Air WA # 2-262 Cornell Dubilier Electronics

Percent Recovery							
Sample ID	TCMX ·	DCBP					
PBLK06069701	81	126					
500	. 91	132					
500 MS	103	137					
500 MSD	79	131					
489	87	130					
490	87	130					
491	99	143					
492	78	114					
493	94	134					
494	- 87	126	•				
495	84	119	•				
496	88	120					
497	104	137					
498	103	144					
499	109	152 *					

TCMX denotes Tetrachloro-m-xylene DCBP denotes Decachlorobiphenyl

		Advisory
		QC
		Limits
TCMX		60-150
DCBP	-	60-150

Table 2.2 Results of the MS/MSD Analysis for PCB in Air WA # 2-262 Cornell Dubilier Electronics based on dry weight

Sample ID	Sample Conc (ng)	MS Spike Added (ng)	MS Conc (ng)	MS % Rec	MSD Spike Added (ng)	MSD Conc (ng)	MSD % Rec	RPD %
500	U	1000	826	83	1000	804	80	3

Table 2.3 Results of the Surrogate Recoveries for PCBs in Dust WA # 2-262 Cornell Dubilier Electronics

	Percent	Recovery
Sample ID	TCMX	DCBP
SBLK06119701	100	117
09889 A	D .	Ð
09890 A	D	D
09891 A	D	D
09892 A	D	D
09894 A	D	D
09895 A	D	. D
09896 A	D	D
09897 A	D	D
09898 A	. D	D
02343 A	D ·	D
02344 A	D	D
02345 A	Ð	D
02346 A	D	Ð
02347 A	D	D ·
02348 A	D:	· D
02349 A	۵	D
02350 B	D	D
02351 A	D	D

TCMX denotes Tetrachioro-m-xylene DCBP denotes Decachiorobiphenyl

	Advisory
	QC
	Limits
TCMX	60-150
DCBP	60-150

2262\DEL\AR\9708\origrean

QA/QC for Lead and Cadmium in Air

QC standards TMMA #1 were used to check the accuracy of the calibration curve. The percent recoveries ranged from 92 to 101 and all recovered concentrations were within the 95% confidence limits. The recoveries are listed in Table 2.4.

A NIST standard was also analyzed. The percent recoveries, listed in Table 2.5, were 95 and 100. The 95 % confidence limits are not available for this analysis.

The percent recoveries of the media spike/media spike duplicate (MS/MSD) analyses, listed in Table 2.6, ranged from 87 to 98. The relative percent differences (RPDs), also listed in Table 2.6, were 2 and 12. All four percent recoveries and both RPDs were within the recommended QC limits.

The percent recoveries of the reagent spike, listed in Table 2.7, were 96 and 103. Both percent recoveries were within the recommended QC limits.

Table 2.4 Results of the QC Standard Analysis for Lead and Cadmium (Air) WA # 2-262 Cornell Dubilier Electronics

Metai	Date Analyzed	Quality Control Standard	Conc. Rec µg/L	True Value µg/L	95 % Confidence Interval	% Rec	
							-
Cadmium	06/11/97	TMAA#1	4.62	5.00	4.10 - 5.83	92	
Lead	06/10/97	TMAA#1	50.6	50.0	43.4 - 56.3	101	

Table 2.5 Results of the Laboratory Control Standard Analysis for Lead and Cadmium (Air WA # 2-262 Cornell Dubilier Electronics

Metai	Date Analyzed	Quality Control Standard	Conc. Rec µg/Filter	True Value µg/Filter	95 % Confidence Interval	% Rec	
Cadmium	06/11/97	NIST Std	0.918	0.97	NA .	95	
Lead	06/10/97	NIST Std	7.45	7.44	NA	100	

Table 2.6 Results of the Media Spike/Media Spike Duplicate (MS/MSD) Analysis for Lead and Cadmium (Air) WA # 2-262 Cornell Dubilier Electronics

Metal	Sample Conc. µg/filter	Spike	Dup.	Recoveri Spike µg/filter	ed Conc. Dup. µg/filter	% Re Spike ug/filter	covery Dup. ug/filter	RPD	Recomm Lim % Rec (Advison	it RPD
Cadmium	0.003	1.00	1.00	0.960	0.980	96	98	. 2	75-125	20
Lead	0.073	1.00	1.00	1.045	0.938	97	87	12	75-125	20

Table 2.7 Results of the Reagent Blank Spike Analysis for Lead and Cadmium (Air) WA # 2-262 Cornell Dubilier Electronics

Metal	Reagent Spiked Conc µg/L	Reagent Blank Conc ug/L	Reagent Rec Conc ug/L	% Rec	Recommended Limit (Advisory Only)
Cadmium	40	0.04	38.3	96	75-125
Lead	40	0.2	41.5	103	75-125

QA/QC for Lead and Cadmium in Dust

The percent recoveries of the laboratory control standard, listed in Table 2.8, were 92 and 96. Both percent recoveries were within the recommended QC limits.

Sample B 09889 was chosen for the duplicate analysis. The relative percent differences, listed in Table 2.9. were 1 and 14 and both results were within the acceptable QC limits.

The percent recovery of the matrix spike (MS) analysis, listed in Table 2.10, ranged was 92. One other percent recovery was not calculated because of matrix interference. The calculated percent recovery was within the acceptable QC limits.

Table 2.8 Results of the Analysis of the Laboratory Control Standard for Lead and Cadmium in Dust WA # 2-262 Cornell Dubilier Electronics

Metal	Spiked Conc mg/kg	Rec Conc mg/kg	% Rec	Recommended Limit
Cadmium	50	46	92	80-120
Lead	50	48	96	80-120

2262\DEL\AR\9708\ORIG

Table 2.9 Results of the Duplicate Analysis for Lead and Cadmium in Dust WA # 2-262 Cornell Dubilier Electronics (based on dry weight)

Metal	Sample ID		Duplicate Analysis mg/kg	RPD	QC Limit
Cadmium	B 09889	133.92	153.36	14	20
Lead	B 09889	3765.97	3735.30	1	20

2262\DEL\AR\9708\ORIG

Table 2.10 Results of the Matrix Spike Analysis for Lead and Cadmium in Dust WA # 2-262 Cornell Dubilier Electronics (based on dry weight)

Metal	Sample ID	Sample Conc mg/kg	Spike Conc mg/kg	Rec Conc mg/kg	% Rec	QC Limits
Cadmium	B 09889	133.92	7.24	107	NC	80-120
Lead	B 09889	3765.97	98.82	3857.02	92	80-120

Roy F. Weston, Inc. GSA Raman Depot Building 209 Annex (Bey F) 2890 Woodbridge Avenue Edison, New Jersey 08837-3679 908-321-4200 • Fax 908-494-402

Kiber Environmental Services 3786 Dekalb Technology Parkway, N.E. Atlanta, GA 30340

Ann: Denise Ward

12 June 1500

Project # 3347-142-001-2262 Cornell Dubilier

As per Weston REAC Purchase Order number 81306, please analyze samples according to the following parameters:

Analysis/Method	Matrix	# of samples
Pb & Cd/ SW-846-6010 or Series 7000	Concrete Chips	18
Data package: see anached Deliverables Requirements		

Samples are expected to arrive at your laboratory on June 13,1997. All applicable QA/QC analysis as per method, will be performed on our sample matrix. Preliminary sample result tables plus a signed copy of our Chain of Custody must be faxed to REAC 7 business days after receipt of the samples. The complete data package is due 21 business days after receipt of the samples. The complete data package must include all items on the deliverables checklist.

Please submit all reports and technical questions concerning this project to John Johnson at (908) 321-4248 or fax to (908) 494-4020. Any contractual question, please call Cynthia Davison at (908) 321-4296. Thank you

Sincerely,
Misty Barrier 604

Data Validation and Report Writing Group Leader Roy F. Weston, Inc. / REAC Project

MB:jj Attachments

CC.

R. Singhvi

S. Burchette

2262\non\mem\9706\sub\2262Con1

V. Kansal

Subcontracting File

C. Davison K. Robbins

Y. Exime

M. Barkley

REAC: Jon, NJ (908) 321-4200 EPA Contract 68-C4-0022

JF CUSTODY RECORD CODMELL DUBLIER

Project Name: 03347-142-601-2262-61 Project Number: RFW Contact:

No: Phone: 321-47202

SHEET NO. OF

08342

rd 3601

Oboby?		Sample Ide	entifica	ation		Analyses Requested							
REAC#	Sample No.	Sampling Location	Matrix	Date Collected	# of Bottles	Container/Pr	reservative	P5 Cd	Voume (1)	<u> </u>			
501	00531	Circaga / Company	.1	6/5/97	1	CASSFILE	MHRLAK		960	7			
502	00333	(it intrad with Aria	4	6/5/97	1				960				
505	00335	12. MOV 1/3701 Shart	A	6/5/97	l l			V	960				
504	00337	CLUMBA PUBLENDEN	.4	6/5/97	1			V	960				
505	00339	KULMBIA WICK BURG	A	6/5ki1	l			7	960				
506	00341	CLUMBIA BACKADOM	A	6/5/97				\	960	W/			
507	00343	ROBALO MEANOR	A	6/577	11			1	960	X	ノノ		
308	00345	Proved Ban River	A	615197	1			~	960	Z			
109	W347	TRUCK FENCUSIE	A	6/5/97					912		·		
310	00349	RUADWAY COANER	Α	6/5/97					960				
5//	09553	FIELD BLANK	A	6/5/97	1				ပ				
512	09555	LOT/MS/MSO	Α	6/5197	3	<u> </u>	/	• /	0				
7													
<u></u>													
				· ·									
						X-7		- · · · · · · · · · · · · · · · · · · ·					
•				·		/_							
L					<u> </u>	<u> </u>							

Matrix: SD -

DS -

DL -

Sediment

Other

Drum Solids Drum Liquids PW -GW -SW-

SL -

Groundwater

Sludge

Potable Water Surface Water S-Soil W-0 -

Water Oil Air

(L)-Litters

Special Instructions:

malmoo - madia sake / MEDIA SPIKE PURICATE

FOR SUBCONTRACTING USE ONLY

FROM CHAIN OF CUSTODY #

Items/Reason	Relinquished By	Date	Received By	Date	Time	Items/Reason	Relinquished By	Date	Received By	Date	Time
ALL/ANAIUSS	The Sell	6647	YEXUME	6/491	10:30	ALLAUALYSIS	Y. Ekune	4497	Harris Calify	6/6/47	M30
		, ,								, ,	
								_			
							·				·
FORM #4	**************************************					**	•				1/94

22000

REACT Son, NJ (908) 321-4200 EPA Contract 68-C4-0022

Project Name CONNELL PUBILIER Project Number: 03347-142-001-2262-01

RFW Contact: 14 POBBINS Phone: 321-4200 08343

SHEET NO. OF___

160647 Sample Identification **Analyses Requested** PCBS VOLUME (L) Container/Preservative REAC # Sample No. Sampling Location Matrix **Date Collected** # of Bottles 450 Ly may Sierre 1/5/91 WHIRFAC NOWS 960 CO33? (changed by the Box (changed by the Box) 960 CO334 L CC330 960 447 00338 1080 COLUMBA BECKLIM 00340 960 00342 960 ROAW/ PROJECT PANOIR 44 00344 960 00346 960 960 84500 49 TACK FENCELIME 960 495 00300 POROVAY CORNER 444 09554 FIRES BLANK 0 09556 LUT/ms/ms/> 500 0 Special Instructions: Matrix:

Sediment SD -DS -

Other

DL -

Drum Solids Drum Liquids SW-

PW -Potable Water GW -

SL -

Groundwater Surface Water

Sludge

Soil Water Oil

S-

W-

0 -

A -

(L),-LITTERS

MS/MSD - MEDIA SAKE MEDIA SPEKE PUPLICATE FOR SUBCONTRACTING USE ONLY

FROM CHAIN OF **CUSTODY#**

ltems∤Reason	Relinquished By,	Date	Received By	Date	Time	Items/Reason	Relinquished By	Date	Received By,	Date	Time
ALL ANALYSIS	Miloth	6/6/97	Y. EXYME	6/6/97	10:30	ALLANA YJU	Y Exume	6/447	H. Nohan	96/17	2.30
		7							11/1	211	
·····		1			1						
		<u> </u>	· -					1			
FORM #4	· · · · · · · · · · · · · · · · · · ·			-		4 -4					8/94

son, NJ (908) 321-4200 **EPA Contract 68-C4-0022** Project Name CORNELL DUBILIFA Project Number <u>03347-142-00</u>

Phone Q08

03968

SHEET NO. OF

706014-2552

Sample Identification

Analyses Requested Pb Sampling Location Matrix **Date Collected** # of Bottles Container/Preservative REAC # Sample No. (1) 14 M DIA COMPUSTR X-12-03 Poly Itce Robalo Combaite Robalo Cambait WorrockCombaile 107 Glas/Ice Kottum

RFW Contact: Ken Robbins

00031

Matrix: SD-

DS -

Sediment **Drum Solids**

X-1. Vacrum Dust

Drum Liquids

X-2- Concrete Chip Dust

PW-GW-SW-

Potable Water Groundwater Surface Water

Sludge

0 -

Oil

Soll

Water

S-

Pacis AT 60°C

FOR SUBCONTRACTING USE ONLY

FROM CHAIN OF

custody # 08400

items/Reason	Relinquished By	Date	Received By	Date	Time	items/Reason	Relinquished By	Date	Received By	Date	Time
ALVAnaline	Willes beboils	6/247	Dubra	13/97	0930						
7 77		1,7,									i
				1			,				
FORM #4						·# .,					N.

Special Instruction

200061

on, NJ REA (908) 321-4200 EPA Contract 68-C4-0022

JF CUSTODY RECORD

Project Name: (Se Nell Desilior Project Number: 03347 - 142 - 631 - 2262 - 01 Phone: 4118 RFW Contact: K. Rahbins

08400

SHEET NO OF

۷	2611197	·	Sample Id	entifica	ation		Analyses Requested						
	REAC #	Sample No.	Sampling Location	Matrix	Date Collected	# of Bottles	Container/Preservative	PKBS	APB,CO 1				
	723	0785 VB	Constitute Consection	x(i)	6/9/97	1	glass for / None	V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
	724	07890AB	Rebuild Compacile	x (D	6/7/11	7	ļi						
	725	OTETIAB	Ruth 10 Care Date (1)	$\lambda \cup$									
	76	01872AB	Marsh Franco de	VO									
-	727	8532 C		X(3)	<i> </i>	ļļ	 	 _ 					
-	74	01315 \$A	Chip & Buitem			 	 	 					
-	728			لحصلا	<u> </u>	 			 				
-			Chip's Button				ļ	 					
-			chip3 top			 	<u> </u>	 					
-			Chip3 Botton.			 	 	 	 				
. -	733	0237744	chip4 tep	7(1)		 	 	177					
ŀ	734	0-3 () EA	Chip & Battoin Chip 5 to P))	 	 	 		 - - - 				
F	736		Chip 5 Beston			 		1	 				
_			surpl top	र छ				 					
	738	0234 9BA	Chip & Berron	ત્ર છે				1					
5 [739	05320BA	Chip 7 top	10)	V,	V		V					
3	740	0235184	thip 7 Bitten	10	6/7/97	1	gloss Jar / None	✓					
<u>ا</u> ا	• ,				<u> </u>		U						
	latrix:				<u> </u>	I Instructions:			V ''				

SD-

DS -

Sediment

Drum Liquida

Other - Yak UVA

(3) Chip Du

Drum Solids

PW -GW -

SW-

Potable Water

Sludge

Groundwater

Surface Water

W-0 -

Soil Water Oil Air

FOR SUBCONTRACTING USE ONLY

FROM CHAIN OF **CUSTODY#**

PCB analysis for Dust Samples

Items/Reason	Relinquished By	Date	Received By	Date	Time	Items/Reason	Relinquished By	Date	Received By	Date	Time
all /Lucysis	Kinkoly	6/9/197	YEXUME	Calsi	10:00	ACCANALYSIS	YEKUME	4((18)		6/11/7	11:401
18			y, touch	RUIST	10 20	XA PL.CO	Y. FRUME	6/11/57	1 olice Man	धारमञ	11:00/
		·									
FORM #4	4	ا ــــــــــــــــــــــــــــــــــــ	:		•						

200062